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Neural Networks



● self-attention
● multi-headed attention
● positional embeddings
● residual links

    

Transformers

Attention

RNNs

Neural Networks

● intuition from translation
● key, queries, values
● similarity score



Attention: Motivated from Translation



Machine Translation

As an optimization problem (Eisenstein, 2018):
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● A fairly “universal” problem:

○ Language understanding
○ Language generation

● Societal benefits of inter-
cultural communication
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Machine Translation

Why? 

● $40billion/year industry
● A center piece of many genres of science fiction
● A fairly “universal” problem:

○ Language understanding
○ Language generation

● Societal benefits of inter-
cultural communication

(Douglas Adams)



Machine Translation

Why Neural Network Approach works?  (Manning, 2018)

● Joint end-to-end training: learning all parameters at once.

● Exploiting distributed representations (embeddings)

● Exploiting variable-length context 

● High quality generation from deep decoders - stronger 

language models (even when wrong, make sense)



Recurrent Neural Network

y(t) = f(h(t)W)

h(t) = g(h(t-1) U + x(t)V)



Recurrent Neural Network

y(t) = f(h(t)W)

h(t) = GRU(h(t-1) ,x(t))



RNN: Encoder

Embedding

y(t) = f(h(t)W)

h(t) = GRU(h(t-1) ,x(t))
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<go>                    y(0)                            y(1)                          y(2)                ….

      y(0)                            y(1)                          y(2)                  y(3)                         y(4)

Softmax

Language 1: (e.g. Chinese)

Language 2: (e.g. English)

Encoder-Decoder (Simplified Representation)
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Softmax



Encoder-Decoder

Challenge: 

● Long distance dependency when translating:

<go>                    y(0)                            y(1)                          y(2)                ….

      y(0)                            y(1)                          y(2)                  y(3)                         y(4)

A lot of responsibility put fixed-size hidden 
state passed from encoder to decoderKayla kicked the ball. 

The ball was kicked by kayla.

Softmax



Long Distance / 
Out of order 
dependencies

<go>               

Softmax

y(0)                 y(1)                            y(2)                                   y(3)                

….

A lot of responsibility put fixed-size hidden 
state passed from encoder to decoder. 
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Attention

<go>               

Softmax

y(0)                 y(1)                            y(2)                                   y(3)                

….

Analogy: random access memory

s1 s2
s3 s4
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attention layer
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s1 s2
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Attention

<go>               

Softmax

y(0)                 y(1)                            y(2)                                   y(3)                

….

attention layer

i: current token of output
N: tokens of input

hi-1 hi hi+1

zn-1 zn zn+1

hn-1 hn hn+1

hn-1 hn hn+1

chi

s1 s2
s3 s4

C = Weighted sum of other hidden states (S):



Attention

s1 s2 s3 s4

chi hi𝜓

αhi->s

1
αhi->s

2

αhi->s

3
αhi->s

4



Attention

s1 s2 s3 s4

chi

αhi->s

1
αhi->s

2

αhi->s

3
αhi->s

4



Attention

s1 s2 s3 s4

chi

αhi->s

1
αhi->s

2

αhi->s

3
αhi->s

4



Attention

s1 s2 s3 s4

chi hi𝜓

αhi->s

1
αhi->s

2

αhi->s

3
αhi->s

4 Score function:

W



Attention

s1 s2 s3 s4

chi hi𝜓

αhi->s

1
αhi->s

2

αhi->s

3
αhi->s

4 Alternative Scoring Functions



Attention

s1 s2 s3 s4

chi hi𝜓

αhi->s

1
αhi->s

2

αhi->s

3
αhi->s

4 Alternative Scoring Functions

If variables are 
standardized, 
matrix multiply 
produces a 
similarity score. 
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Score function:

A useful abstraction is to make the 
vector attended to (the “value 
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Attention

s1 s2 s3 s4

chi hi𝜓

αhi->s

1
αhi->s

2

αhi->s

3
αhi->s

4

v , Wh , Ws

z1 z2 z3 z4

values
keys

query

Attention as weighting a value 
based on a query and key:

(Eisenstein, 2018)



(Eisenstein, 2018)

Attention as weighting a value 
based on a query and key:



Attention

(“synced”, 2017)

his4
s3s2s1

Attention as weighting a value 
based on a query and key:



Attention

(“synced”, 2017)
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Attention: Summary

<go>                      ….

Attention

q(4)
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Attention: Summary

<go>                      ….

Attention

(        ,          )

q(4)

NN

    v(0)                       v(1)                       v(2)

    k(0)                       k(1) ,                    k(2) 

all equations with dot-product score:



Attention:
In the context of 
multiple layers of 
RNNs

<go>               

Softmax

y(0)                 y(1)                            y(2)                                   y(3)                

….

s1 s2
s3 s4

Do we even need all these 
RNNs?
(Vaswani et al., 2017: Attention is all you need)



Evolution of Sequence Modeling

RNNs   
-> GRU/LSTMs-RNN     

-> LSTMS with Attention  
-> Attention without RNN



● self-attention
● multi-headed attention
● positional embeddings
● residual links

    

Transformers

Attention

RNNs

Neural Networks

● intuition from translation
● key, queries, values
● similarity score
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Self-Attention
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… …
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Self-Attention



Output

α
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h
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Attend to all other words in 
the sequence

Self-Attention



Output

α

𝜓

h
hi-1      hi                hi+1
hi+2I'm feeling very      elated.

yi-1      yi                yi+1 yi+2

Attend to all other words in 
the sequence

Self-Attention



Output

α

𝜓

h
hi-1      hi                hi+1
hi+2

yi-1      yi                yi+1 yi+2

A weighted combination of 
other words' vectors. 

I'm feeling very      elated.

Self-Attention
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h
hi-1      hi                hi+1
hi+2

yi-1      yi                yi+1 yi+2

wi-1      wi                wi+1 wi+2                ….

Self-Attention



Output

α

𝜓

h
hi-1      hi                hi+1
hi+2

yi-1      yi                yi+1 yi+2

I'm feeling very      elated.

The Transformer's Heart: Self-Attention
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Output
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h
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X X X X

+

dot product
dp dp dp

scaling 
parameter

(qkt) σ(q,k)

Self-Attention



The horse which was raced past the barn tripped . 

RNN Limitation: 
Losing Track of Long Distance Dependencies



The horse which was raced past the barn tripped . 

RNN Limitation: 
Losing Track of Long Distance Dependencies



Language modeling 
with an RNN

RNN: Limitation: Not parallelizable

step 1 step 2 … 



Person A Person B
How are you? I feel fine –even great!  My life is a great mess! I’m 

having a very hard time being 
happy.

What is going on? Earlier, I played the game 
Yahtzee with my partner. I  
could not get that die to roll 
a 1! Now I’m lying on my 
bed for a rest.

My business partner was lying 
to me. He was trying to game 
the system and played me. I 
think I am going to die –he left 
and now I have to pay the rest 
of his fine. 

(Kjell, Kjell, and Schwartz, 2023)

Contextual Word Vectors



Language modeling 
with an RNN

RNN: Limitation: Not parallelizable

step 1 step 2 … 



● Capture long-distance dependencies

● Preserving sequential distances / periodicity

● Capture multiple relationships

● Easy to parallelize -- don’t need sequential processing.

The Transformer: Motivation



Introducing the Transformer
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Encoder



Encoder: Input Embedding



Input Embedding 

Original Sentence

Tokenization

Input IDs
(embedding lookup: position in the vocab - 
FIXED)

Embeddings
(vector of size dmodel= 512 or 1024 or …
LEARNED)



Encoder: Positional Encoding



Positional Encoding

Original Sentence
(tokens)

Embeddings
(vector of size dmodel= 512 or 1024 or …
Learned)

Positional Embedding
(vector of size dmodel= 512 or 1024 or …
Can be Learned or FIxed)

e.g.



Encoder: Multi-Head Attention
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Specs for Transformer's Self-Attention

q = Wq
Thi

k = Wk
Thi

v = Wv
Thi
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Two Additions: 
1. Linearly parameterized 

Q, K, and V:

2. Scaling parameter for score

Specs for Transformer's Self-Attention
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Self-Attention in PyTorch

import nn.functional as f
class SelfAttention(nn.Module):

def __init__(self, h_dim:int):
self.Q = nn.Linear(h_dim, h_dim) #1 head
self.K = nn.Linear(h_dim, h_dim)
self.V = nn.Linear(h_dim, h_dim)
self.dropout = nn.dropout(p=0.1)

def forward(hidden_states:torch.Tensor):
v = self.V(hidden_states)
k = self.K(hidden_states)
q = self.Q(hidden_states)
attn_scores = torch.matmul(q, k.T)
attn_probs = f.Softmax(attn_scores)
attn_probs = self.dropout(attn_probs)
context = torch.matmul(attn_probs, v)
return context

ktq(q,k) (qkt) σ

Linear layer:
WTX

One set of weights 
for each of K, Q, 
and V
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Self-Attention in PyTorch

import nn.functional as f
class SelfAttention(nn.Module):

def __init__(self, h_dim:int):
self.Q = nn.Linear(h_dim, h_dim) #1 head
self.K = nn.Linear(h_dim, h_dim)
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Linear layer:
WTX

One set of weights 
for each of for K, 
Q, and V



Single-headed (standard self-attention)

Limitation (thus far): Can’t capture multiple types of dependencies between words. 

Multi-headed Attention



Solution: Multi-head attention

Multi-headed Attention

Limitation (thus far): Can’t capture multiple types of dependencies between words. 



The Transformer: Multi-headed Attention



Builds on weighted,  scaled dot-product
1. Linearly parameterized Q, K, and V:

2. Scaling parameter for score

Transformer's Multi-headed Attention

q = Wq
Thi

k = Wk
Thi

v = Wv
Thi

d = dims / num_hs

update "h"



Transformer's Residual Links



Heat matrix of attention weights from one layer (rows) to the next (cols). 

Transformer's Residual Links

without residuals with residuals

Output=LayerNorm(h+MHAtten(h)) 



Detailed Overview of (HuggingFace) Transformer Matrices and Computation
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Masked 
Language Modeling

Task: Estimate P(wi| w1,…wi-1, wi+1... wn)
:P(masked word given context)

P(with | He ate the cake <M> the fork) = ?

     with   yummy  using     and     by   without

Sequence
(He, at, the, cake,<MASK>, 
the, fork)

Neural
Network

What is the masked 
word in the sequence?



My life is a great messsentence (sequence) input:

…

layer 0: 
(input: word-type embeddings)

layer k-1: 
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with 

context)

(Kjell, Kjell, and Schwartz, 2023)

layer k: 
(used for language modeling)

Transformer Language Models:  Uses multiple layers of a transformer



Auto-encoder (MLM): 
● Connections go both directions. 
● Task is predict word in middle:

p(wi| …, pwi-2, wi-1, wi+1, wi+2…)
● Better for:

○ embeddings
○ fine-tuning (transfer learning)
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p(wi| …, pwi-2, wi-1, wi+1, wi+2…)
● Better for:

○ embeddings
○ fine-tuning (transfer learning)

Auto-regressor (generator): 
● Connections go forward only
● Task is predict word next word:

p(wi| wi-1, wi-2, …)
● Better for:

○ generating text
○ zero-shot learning



Auto-encoder (MLM): 
● Connections go both directions. 
● Task is predict word in middle:

p(wi| …, pwi-2, wi-1, wi+1, wi+2…)
● Better for:

○ embeddings
○ fine-tuning (transfer learning)

Auto-regressor (generator): 
● Connections go forward only
● Task is predict word next word:

p(wi| wi-1, wi-2, …)
● Better for:

○ generating text
○ zero-shot learning

…

…

…

…

…

…

…

…



Bert: Attention by Layers
https://colab.research.google.com/drive/1vlOJ1lhdujVjfH857hvYKIdKPTD9Kid8

(Vig, 2019)

https://colab.research.google.com/drive/1vlOJ1lhdujVjfH857hvYKIdKPTD9Kid8


Hugging Face or AllenNLP

https://github.com/huggingface/transformers 

https://docs.allennlp.org/v2.10.1/api/modules/transformer/transformer_module/ 

#example for getting embeddings

from transformers import BertModel, PreTrainedTokenizerFast, pipeline

bert_tokenizer = PreTrainedTokenizerFast.from_pretrained('google-bert/bert-base-uncased')

bert_model = BertModel.from_pretrained('google-bert/bert-base-uncased')

pipe = pipeline('feature-extraction', model=bert_model, tokenizer=bert_tokenizer)

emb = pipe(text)

print(emb[0][0])

https://github.com/huggingface/transformers
https://docs.allennlp.org/v2.10.1/api/modules/transformer/transformer_module/


Transformer (as of 2017)

“WMT-2014” Data Set. BLEU scores: 



Transformers as of 2024

General Language Understanding Evaluations:

https://gluebenchmark.com/leaderboard

https://super.gluebenchmark.com/leaderboard/

https://gluebenchmark.com/leaderboard
https://super.gluebenchmark.com/leaderboard/


Large Transformer Language Model

Classifier

Assistant, 
QA 

Machine 
Translation

Web 
Search

Document 
Classification

Sentiment
Analysis …

absolutamente 
me gustaría ir 
de excursión

(NLP System)

Language

Soni, N., Matero, M., 
Balasubramanian, N., & 
Schwartz, H. (2022, May). 
Human Language Modeling. In 
Findings of the Association for 
Computational Linguistics: ACL 
2022 (pp. 622-636).

Transformers as of 2023



BERT Performance: e.g. Question Answering

https://rajpurkar.github.io/SQuAD-explorer/

https://rajpurkar.github.io/SQuAD-explorer/


Challenges to sequential representation learning

● Capture long-distance dependencies
Self-attention treats far away words similar to those close.

● Preserving sequential distances / periodicity
Positional embeddings encode distances/periods.

● Capture multiple relationships
Multi-headed attention enables multiple compositions. 

● Easy to parallelize -- don’t need sequential processing.
Entire layer can be computed at once. Is only matrix 
multiplications + standardizing. 

The Transformer: Take Away



Part 3: Applying Transformer LMs 

Foundational Applied



Applying Transformer LMs 

Foundational Applied

Pretraining

Instruction Tuning

Fine-Tuning the LM
(continued pretraining)

Task Fine-Tuning

Retrieval-Augmented 
Generation

Zero-Shot Learning
/ Direct Chat

Few-Shot Learning

Supervised ML
Features

modifies LM weights injects history no change or history

contextual embeddings

Unsupervised ML 
or Similarity



Applying Transformer LMs 

Foundational Applied

Pretraining

Instruction Tuning

Fine-Tuning the LM
(continued pretraining)

Task Fine-Tuning

Retrieval-Augmented 
Generation

Zero-Shot Learning
/ Direct Chat

Few-Shot Learning

AEAR

AEAR

AR

AE

AR

AR

AR

Supervised ML
Features

AE

modifies LM weights injects history no change or history

contextual embeddings

Unsupervised ML 
or Similarity

AE

AR

AR

AR



Foundational Applied

Pretraining

Instruction Tuning

Fine-Tuning the LM
(continued pretraining)

Task Fine-Tuning

Retrieval-Augmented 
Generation

Zero-Shot Learning
/ Direct Chat

Few-Shot Learning

AEAR

AEAR

AR

AR

AR

AR

Supervised ML
Features

AE

injects history no change or history

contextual embeddings

Unsupervised ML 
or Similarity

AE

Applying Transformer LMs 

AEAR

modifies LM weights
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…

layer 0: 
(input: word-type embeddings)

layer k-1: 
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with 

context)

(Kjell, Kjell, and Schwartz, 2023)

layer k: 
(used for language modeling)

Pretraining; FTing the LM; Instruction Tuning

softmax for LM:

Large Training Corpus



sentence (sequence) input:

…

layer 0: 
(input: word-type embeddings)

layer k-1: 
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with 

context)

layer k: 
(used for language modeling)

Pretraining; FTing the LM; Instruction Tuning

softmax for LM:

Large Training CorpusNew Continued Training Corpus



sentence (sequence) input:

…

layer 0: 
(input: word-type embeddings)

layer k-1: 
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with 

context)

layer k: 
(used for language modeling)

Pretraining; FTing the LM; Instruction Tuning

softmax for LM:

Large Training Corpus
Task Prompts 

e.g. What topic is this about?  "Last night, the 
        Seawolves won the game." answer: sports
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sentence (sequence) input:

…

layer 0: 
(input: word-type embeddings)

layer k-1: 
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with 

context)

(Kjell, Kjell, and Schwartz, 2023)

layer k: 
(used for language modeling)

Task Fine-Tuning

softmax for LM:

Large Training Corpus



sentence (sequence) input:

…

layer 0: 
(input: word-type embeddings)

layer k-1: 
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with 

context)

(Kjell, Kjell, and Schwartz, 2023)

optional layer(s) for task:

Task Fine-Tuning

classifier or regressor:
(e.g. sentiment, topic classification, etc.)

Large Training Corpus



AR

AR

Foundational Applied

Pretraining

Instruction Tuning

Fine-Tuning the LM
(continued pretraining)

Task Fine-Tuning

Retrieval-Augmented 
Generation
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/ Direct Chat

Few-Shot Learning
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modifies LM weights

Foundational Applied

Pretraining

Instruction Tuning

Fine-Tuning the LM
(continued pretraining)

Task Fine-Tuning

Retrieval-Augmented 
Generation

Zero-Shot Learning
/ Direct Chat

Few-Shot Learning

AEAR

AEAR

AR

AE

AR

AR

AR

Supervised ML
Features

AE

injects history no change or history

Unsupervised ML 
or Similarity

AE

Applying Transformer LMs 

contextual embeddings

AR

AR



sentence (sequence) input:

…

layer 0: 
(input: word-type embeddings)

layer k-1: 
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with 

context)

(Kjell, Kjell, and Schwartz, 2023)

layer k: 
(used for language modeling)

Contextual Embeddings: for Supervised ML; for Similarity (unsup)

softmax for LM:

New Corpus



sentence (sequence) input:

…

layer 0: 
(input: word-type embeddings)

layer k-1: 
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with 

context)

(Kjell, Kjell, and Schwartz, 2023)

layer k: 
(used for language modeling)

Contextual Embeddings: for Supervised ML; for Similarity (unsup)

softmax for LM:
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sentence (sequence) input:

…

layer 0: 
(input: word-type embeddings)

layer k-1: 
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with 

context)

(Kjell, Kjell, and Schwartz, 2023)

layer(s) for task:

classifier or regressor:
(e.g. sentiment, topic classification, etc.)

Large Training Corpus

linear, FFN, CNN, Random Forest, 
or Any ML Model

Contextual Embeddings: for Supervised ML

equivalent to task fine-tuning but with all 
frozen layers



sentence (sequence) input:

…

layer 0: 
(input: word-type embeddings)

layer k-1: 
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with 

context)

(Kjell, Kjell, and Schwartz, 2023)

layer(s) for task:

Similarity?
classifier or regressor:

(e.g. sentiment, topic classification, etc.)

Large Training Corpus

Optional Aggregation

Contextual Embeddings: for Similarity (unsup)

equivalent to task fine-tuning but with all 
frozen layers

Embedding Comparison 
Embedding



modifies LM weights

Foundational Applied

Pretraining

Instruction Tuning

Fine-Tuning the LM
(continued pretraining)

Task Fine-Tuning

Retrieval-Augmented 
Generation

Zero-Shot Learning
/ Direct Chat

Few-Shot Learning

AEAR

AEAR
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Supervised ML
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AR

modifies LM weights

Foundational Applied

Pretraining

Instruction Tuning

Fine-Tuning the LM
(continued pretraining)

Task Fine-Tuning

Retrieval-Augmented 
Generation

Zero-Shot Learning
/ Direct Chat

Few-Shot Learning

AEAR

AEAR

AR

AE

AR

AR

AR

Supervised ML
Features

AE

Unsupervised ML 
or Similarity

AE

contextual embeddings

AR

injects history no change or history

Applying Transformer LMs 



sentence (sequence) input:

…

layer 0: 
(input: word-type embeddings)

layer k-1: 
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with 

context)

layer k: 
(used for language modeling)

RAG, Few-Shot, Zero-Shot

softmax for LM:

Large Training Corpus
Task Prompts 

e.g. What topic is this about?  "Last night, the 
        Seawolves won the game." answer: sports

No training! 
The model is frozen

Zero shot = Prompt has no examples, just 
prompting directly for the task, without answer. 

Few shot = Prompt has a few examples of the task 
with answer, then prompting for the task without 
answer. 

RAG = Using other NLP techniques to retrieve 
relevant information to include in the prompt 
(retrieval approach can use other models). 

Answer(s)



Applying Transformer LMs 

Foundational Applied

Pretraining

Instruction Tuning

Fine-Tuning the LM
(continued pretraining)

Task Fine-Tuning

Retrieval-Augmented 
Generation

Zero-Shot Learning
/ Direct Chat

Few-Shot Learning

AEAR

AEAR

AR

AE

AR

AR

AR

Supervised ML
Features

AE

modifies LM weights injects history no change or history

contextual embeddings

Unsupervised ML 
or Similarity

AE
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Supplemental Review Material



Auto-Encoding

Auto-Regressive

AE AR

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive



simpler version

Foundational Change
(modifies the LM weights)

Applied
(no change to LM)

Pretraining

Instruction Tuning

Fine-Tuning the LM
(continued pretraining)

Task Fine-Tuning

Retrieval-Augmented 
Generation

Zero-Shot Learning
/ Direct Chat

Few-Shot Learning

Embeddings



My life is a great joysentence (sequence) input:

…

layer 0: 
(input: word-type embeddings)

layer k-1: 
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with 

context)

(Kjell, Kjell, and Schwartz, 2023)

layer k: 
(used for language modeling)

Pretraining; FTing the LM; Instruction Tuning

softmax for LM:



Decoder



Decoder: Cross Attention



Decoder: Masked Multi-Head Attention


