
Attention & Transformer LMs

…

…

…

…

…

…

CSE538 - Spring 2025

Timeline: Language Modeling and Vector Semantics

GPT4.5

RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

Timeline: Language Modeling and Vector Semantics

GPT4.5

2018

2010

2003

1948

1980

~logarithmic scale

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

These (or similar) are
behind almost all
state-of-the-art
modern NLP systems

RoBERTA

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

BERT

ELMO

GPT

2018

2010

2003

1948

1980

~logarithmic scale

Blei et al.: [LDA Topic Modeling]

Osgood: The
Measurement
of Meaning

Deerwater:
Indexing by Latent
Semantic Analysis
(LSA)

Brown et al.: Class-based ngram models of
 natural language

Switzer: Vector
Space Models

Bengio:
Neural-net
based
embeddings

Mikolov: word2vec

Collobert and
Weston: A unified
architecture for
natural language
processing: Deep
neural networks...

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

GPT4.5

RoBERTA

These (or similar) are
behind almost all
state-of-the-art
modern NLP systems

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

BERT

ELMO

GPT

2018

2010

2003

1948

1980

~logarithmic scale

Blei et al.: [LDA Topic Modeling]

Osgood: The
Measurement
of Meaning

Deerwater:
Indexing by Latent
Semantic Analysis
(LSA)

Brown et al.: Class-based ngram models of
 natural language

Switzer: Vector
Space Models

Bengio:
Neural-net
based
embeddings

Mikolov: word2vec

Collobert and
Weston: A unified
architecture for
natural language
processing: Deep
neural networks...

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

GPT4.5

RoBERTA

These (or similar) are
behind almost all
state-of-the-art
modern NLP systems

Bidirectional Transformers

Generative Pretrained
Transformers

Robustly Optimized
BERTransformers
Pretraining Approch

Transformers

(Advances in neural information
processing systems, 2017)

Transformers

(Advances in neural information
processing systems, 2017)

Transformers

Attention

RNNs

Neural Networks

● self-attention
● multi-headed attention
● positional embeddings
● residual links

Transformers

Attention

RNNs

Neural Networks

● intuition from translation
● key, queries, values
● similarity score

Attention: Motivated from Translation

Machine Translation

As an optimization problem (Eisenstein, 2018):

Machine Translation

Why?

● $40billion/year industry
● A center piece of many genres of science fiction
● A fairly “universal” problem:

○ Language understanding
○ Language generation

● Societal benefits of inter-
cultural communication

Machine Translation

Why?

● $40billion/year industry
● A center piece of many genres of science fiction
● A fairly “universal” problem:

○ Language understanding
○ Language generation

● Societal benefits of inter-
cultural communication

Machine Translation

Why?

● $40billion/year industry
● A center piece of many genres of science fiction
● A fairly “universal” problem:

○ Language understanding
○ Language generation

● Societal benefits of inter-
cultural communication

(Douglas Adams)

Machine Translation

Why Neural Network Approach works? (Manning, 2018)

● Joint end-to-end training: learning all parameters at once.

● Exploiting distributed representations (embeddings)

● Exploiting variable-length context

● High quality generation from deep decoders - stronger

language models (even when wrong, make sense)

Recurrent Neural Network

y(t) = f(h(t)W)

h(t) = g(h(t-1) U + x(t)V)

Recurrent Neural Network

y(t) = f(h(t)W)

h(t) = GRU(h(t-1) ,x(t))

RNN: Encoder

Embedding

y(t) = f(h(t)W)

h(t) = GRU(h(t-1) ,x(t))

Encoder-Decoder (Simplified Representation)

<go> y(0) y(1) y(2) ….

 y(0) y(1) y(2) y(3) y(4)

Softmax

<go> y(0) y(1) y(2) ….

 y(0) y(1) y(2) y(3) y(4)

Softmax

essentially a language model conditioned on
the final state from the encoder.

Encoder-Decoder (Simplified Representation)

<go> y(0) y(1) y(2) ….

 y(0) y(1) y(2) y(3) y(4)

Softmax

essentially a language model conditioned on
the final state from the encoder.

Encoder-Decoder (Simplified Representation)

<go> y(0) y(1) y(2) ….

 y(0) y(1) y(2) y(3) y(4)

Softmax

Language 1: (e.g. Chinese)

Language 2: (e.g. English)

Encoder-Decoder (Simplified Representation)

Encoder-Decoder

Challenge:

● Long distance dependency when translating:

<go> y(0) y(1) y(2) ….

 y(0) y(1) y(2) y(3) y(4)

Kayla kicked the ball.

The ball was kicked by kayla.

Softmax

Encoder-Decoder

Challenge:

● Long distance dependency when translating:

<go> y(0) y(1) y(2) ….

 y(0) y(1) y(2) y(3) y(4)

A lot of responsibility put fixed-size hidden
state passed from encoder to decoderKayla kicked the ball.

The ball was kicked by kayla.

Softmax

Long Distance /
Out of order
dependencies

<go>

Softmax

y(0) y(1) y(2) y(3)

….

A lot of responsibility put fixed-size hidden
state passed from encoder to decoder.

Long Distance /
Out of order
dependencies

<go>

Softmax

y(0) y(1) y(2) y(3)

….

Attention

<go>

Softmax

y(0) y(1) y(2) y(3)

….

s1 s2
s3 s4

Attention

<go>

Softmax

y(0) y(1) y(2) y(3)

….

Analogy: random access memory

s1 s2
s3 s4

Attention

<go>

Softmax

y(0) y(1) y(2) y(3)

….

attention layer
(in reality)

s1 s2
s3 s4

Attention

<go>

Softmax

y(0) y(1) y(2) y(3)

….

attention layer

C = Weighted sum of other hidden states

hi-1 hi hi+1

zn-1 zn zn+1

hn-1 hn hn+1

hn-1 hn hn+1

chi

s1 s2
s3 s4

Attention

<go>

Softmax

y(0) y(1) y(2) y(3)

….

attention layer

i: current token of output
N: tokens of input

hi-1 hi hi+1

zn-1 zn zn+1

hn-1 hn hn+1

hn-1 hn hn+1

chi

s1 s2
s3 s4

C = Weighted sum of other hidden states (S):

Attention

s1 s2 s3 s4

chi hi𝜓

αhi->s

1
αhi->s

2

αhi->s

3
αhi->s

4

Attention

s1 s2 s3 s4

chi

αhi->s

1
αhi->s

2

αhi->s

3
αhi->s

4

Attention

s1 s2 s3 s4

chi

αhi->s

1
αhi->s

2

αhi->s

3
αhi->s

4

Attention

s1 s2 s3 s4

chi hi𝜓

αhi->s

1
αhi->s

2

αhi->s

3
αhi->s

4 Score function:

W

Attention

s1 s2 s3 s4

chi hi𝜓

αhi->s

1
αhi->s

2

αhi->s

3
αhi->s

4 Alternative Scoring Functions

Attention

s1 s2 s3 s4

chi hi𝜓

αhi->s

1
αhi->s

2

αhi->s

3
αhi->s

4 Alternative Scoring Functions

If variables are
standardized,
matrix multiply
produces a
similarity score.

Attention

s1 s2 s3 s4

chi hi𝜓

αhi->s

1
αhi->s

2

αhi->s

3
αhi->s

4 Score function:

W

Attention

s1 s2 s3 s4

chi hi𝜓

αhi->s

1
αhi->s

2

αhi->s

3
αhi->s

4 Score function:

A useful abstraction is to make the
vector attended to (the “value
vector”, Z) separate than the “key
vector” (s).

z1 z2 z3 z4

W

Attention

s1 s2 s3 s4

chi hi𝜓

αhi->s

1
αhi->s

2

αhi->s

3
αhi->s

4
Score function:

A useful abstraction is to make the
vector attended to (the “value
vector”, Z) separate than the “key
vector” (s).

z1 z2 z3 z4

values
keys

query

W

Attention

s1 s2 s3 s4

chi hi𝜓

αhi->s

1
αhi->s

2

αhi->s

3
αhi->s

4

v , Wh , Ws

z1 z2 z3 z4

values
keys

query

Attention as weighting a value
based on a query and key:

(Eisenstein, 2018)

(Eisenstein, 2018)

Attention as weighting a value
based on a query and key:

Attention

(“synced”, 2017)

his4
s3s2s1

Attention as weighting a value
based on a query and key:

Attention

(“synced”, 2017)

his4
s3s2s1

Attention

(“synced”, 2017)

his4
s3s2s1

(Bahdanau et al., 2015)

Attention

(“synced”, 2017)

his4
s3s2s1

(Bahdanau et al., 2015)

Attention: Summary

<go> ….

Attention

q(4)

NN

 v(0) v(1) v(2)

 k(0) k(1) , k(2)

Attention: Summary

<go> ….

Attention

(,)

q(4)

NN

 v(0) v(1) v(2)

 k(0) k(1) , k(2)

Attention: Summary

<go> ….

Attention

(,)

q(4)

NN

 v(0) v(1) v(2)

 k(0) k(1) , k(2)

all equations with dot-product score:

Attention:
In the context of
multiple layers of
RNNs

<go>

Softmax

y(0) y(1) y(2) y(3)

….

s1 s2
s3 s4

Do we even need all these
RNNs?
(Vaswani et al., 2017: Attention is all you need)

Evolution of Sequence Modeling

RNNs
-> GRU/LSTMs-RNN

-> LSTMS with Attention
-> Attention without RNN

● self-attention
● multi-headed attention
● positional embeddings
● residual links

Transformers

Attention

RNNs

Neural Networks

● intuition from translation
● key, queries, values
● similarity score

…

…

…

…

Self-Attention

yi-1 yi yi+1 yi+2

hi-1 hi hi+1
hi+2wi-1 wi wi+1 wi+2

… …

yi-1 yi yi+1 yi+2

hi-1 hi hi+1
hi+2wi-1 wi wi+1 wi+2

Self-Attention

Output

α

𝜓

h
hi-1 hi hi+1
hi+2wi-1 wi wi+1 wi+2

yi-1 yi yi+1 yi+2

Attend to all other words in
the sequence

Self-Attention

Output

α

𝜓

h
hi-1 hi hi+1
hi+2I'm feeling very elated.

yi-1 yi yi+1 yi+2

Attend to all other words in
the sequence

Self-Attention

Output

α

𝜓

h
hi-1 hi hi+1
hi+2

yi-1 yi yi+1 yi+2

A weighted combination of
other words' vectors.

I'm feeling very elated.

Self-Attention

Output

α

𝜓

h
hi-1 hi hi+1
hi+2

yi-1 yi yi+1 yi+2

wi-1 wi wi+1 wi+2 ….

Self-Attention

Output

α

𝜓

h
hi-1 hi hi+1
hi+2

yi-1 yi yi+1 yi+2

I'm feeling very elated.

The Transformer's Heart: Self-Attention

Output

α

𝜓

h
hi-1 hi hi+1
hi+2wi-1 wi wi+1 wi+2

yi-1 yi yi+1 yi+2

X X X X

+

dot product
dp dp dp

Self-Attention

Output

α

𝜓

h
hi-1 hi hi+1
hi+2wi-1 wi wi+1 wi+2

yi-1 yi yi+1 yi+2

X X X X

+

dot product
dp dp dp

scaling
parameter

(qkt) σ(q,k)

Self-Attention

The horse which was raced past the barn tripped .

RNN Limitation:
Losing Track of Long Distance Dependencies

The horse which was raced past the barn tripped .

RNN Limitation:
Losing Track of Long Distance Dependencies

Language modeling
with an RNN

RNN: Limitation: Not parallelizable

step 1 step 2 …

Person A Person B
How are you? I feel fine –even great! My life is a great mess! I’m

having a very hard time being
happy.

What is going on? Earlier, I played the game
Yahtzee with my partner. I
could not get that die to roll
a 1! Now I’m lying on my
bed for a rest.

My business partner was lying
to me. He was trying to game
the system and played me. I
think I am going to die –he left
and now I have to pay the rest
of his fine.

(Kjell, Kjell, and Schwartz, 2023)

Contextual Word Vectors

Language modeling
with an RNN

RNN: Limitation: Not parallelizable

step 1 step 2 …

● Capture long-distance dependencies

● Preserving sequential distances / periodicity

● Capture multiple relationships

● Easy to parallelize -- don’t need sequential processing.

The Transformer: Motivation

Introducing the Transformer

Introducing the Transformer

Encoder

Encoder: Input Embedding

Input Embedding

Original Sentence

Tokenization

Input IDs
(embedding lookup: position in the vocab -
FIXED)

Embeddings
(vector of size dmodel= 512 or 1024 or …
LEARNED)

Encoder: Positional Encoding

Positional Encoding

Original Sentence
(tokens)

Embeddings
(vector of size dmodel= 512 or 1024 or …
Learned)

Positional Embedding
(vector of size dmodel= 512 or 1024 or …
Can be Learned or FIxed)

e.g.

Encoder: Multi-Head Attention

Output

α

𝜓

h
hi-1 hi hi+1
hi+2wi-1 wi wi+1 wi+2

yi-1 yi yi+1 yi+2

X X X X

+

dot product
dp dp dp

Two Additions:
1. Linearly parameterized

Q, K, and V:

2.

Specs for Transformer's Self-Attention

q = Wq
Thi

k = Wk
Thi

v = Wv
Thi

Output

α

𝜓

h
hi-1 hi hi+1
hi+2wi-1 wi wi+1 wi+2

yi-1 yi yi+1 yi+2

X X X X

+

dot product
dp dp dp

Two Additions:
1. Linearly parameterized

Q, K, and V:

2. Scaling parameter for score

Specs for Transformer's Self-Attention

q = Wq
Thi

k = Wk
Thi

v = Wv
Thi

Two Additions:
1. Linearly parameterized

Q, K, and V:

2. Scaling parameter for score

Specs for Transformer's Self-Attention

q = Wq
Thi

k = Wk
Thi

v = Wv
Thi

Self-Attention in PyTorch

import nn.functional as f
class SelfAttention(nn.Module):

def __init__(self, h_dim:int):
self.Q = nn.Linear(h_dim, h_dim) #1 head
self.K = nn.Linear(h_dim, h_dim)
self.V = nn.Linear(h_dim, h_dim)
self.dropout = nn.dropout(p=0.1)

def forward(hidden_states:torch.Tensor):
v = self.V(hidden_states)
k = self.K(hidden_states)
q = self.Q(hidden_states)
attn_scores = torch.matmul(q, k.T)
attn_probs = f.Softmax(attn_scores)
attn_probs = self.dropout(attn_probs)
context = torch.matmul(attn_probs, v)
return context

ktq(q,k) (qkt) σ

Linear layer:
WTX

One set of weights
for each of K, Q,
and V

Self-Attention in PyTorch

import nn.functional as f
class SelfAttention(nn.Module):

def __init__(self, h_dim:int):
self.Q = nn.Linear(h_dim, h_dim) #1 head
self.K = nn.Linear(h_dim, h_dim)
self.V = nn.Linear(h_dim, h_dim)
self.dropout = nn.dropout(p=0.1)

def forward(hidden_states:torch.Tensor):
v = self.V(hidden_states)
k = self.K(hidden_states)
q = self.Q(hidden_states)
attn_scores = torch.matmul(q, k.T)
attn_probs = f.Softmax(attn_scores)
attn_probs = self.dropout(attn_probs)
context = torch.matmul(attn_probs, v)
return context

ktq(q,k) (qkt) σ

Linear layer:
WTX

One set of weights
for each of K, Q,
and V

Self-Attention in PyTorch

import nn.functional as f
class SelfAttention(nn.Module):

def __init__(self, h_dim:int):
self.Q = nn.Linear(h_dim, h_dim) #1 head
self.K = nn.Linear(h_dim, h_dim)
self.V = nn.Linear(h_dim, h_dim)
self.dropout = nn.dropout(p=0.1)

def forward(hidden_states:torch.Tensor):
v = self.V(hidden_states)
k = self.K(hidden_states)
q = self.Q(hidden_states)
attn_scores = torch.matmul(q, k.T)
attn_probs = f.Softmax(attn_scores)
attn_probs = self.dropout(attn_probs)
context = torch.matmul(attn_probs, v)
return context

ktq(q,k) (qkt) σ

Linear layer:
WTX

One set of weights
for each of for K,
Q, and V

Single-headed (standard self-attention)

Limitation (thus far): Can’t capture multiple types of dependencies between words.

Multi-headed Attention

Solution: Multi-head attention

Multi-headed Attention

Limitation (thus far): Can’t capture multiple types of dependencies between words.

The Transformer: Multi-headed Attention

Builds on weighted, scaled dot-product
1. Linearly parameterized Q, K, and V:

2. Scaling parameter for score

Transformer's Multi-headed Attention

q = Wq
Thi

k = Wk
Thi

v = Wv
Thi

d = dims / num_hs

update "h"

Transformer's Residual Links

Heat matrix of attention weights from one layer (rows) to the next (cols).

Transformer's Residual Links

without residuals with residuals

Output=LayerNorm(h+MHAtten(h))

Detailed Overview of (HuggingFace) Transformer Matrices and Computation

Detailed Overview of (HuggingFace) Transformer Matrices and Computation

scale

Detailed Overview of (HuggingFace) Transformer Matrices and Computation

scale

Detailed Overview of (HuggingFace) Transformer Matrices and Computation

Detailed Overview of (HuggingFace) Transformer Matrices and Computation

Detailed Overview of (HuggingFace) Transformer Matrices and Computation

Detailed Overview of (HuggingFace) Transformer Matrices and Computation

Collobert and
Weston: A unified
architecture for
natural language
processing: Deep
neural networks...

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

GPT3

XLNet
RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

Blei et al.: [LDA Topic Modeling]

Osgood: The
Measurement
of Meaning

Deerwater:
Indexing by Latent
Semantic Analysis
(LSA)

Brown et al.: Class-based ngram models of
 natural language

Switzer: Vector
Space Models

Bengio:
Neural-net
based
embeddings

Mikolov: word2vec

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

Collobert and
Weston: A unified
architecture for
natural language
processing: Deep
neural networks...

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

GPT3

XLNet
RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

Blei et al.: [LDA Topic Modeling]

Osgood: The
Measurement
of Meaning

Deerwater:
Indexing by Latent
Semantic Analysis
(LSA)

Brown et al.: Class-based ngram models of
 natural language

Switzer: Vector
Space Models

Bengio:
Neural-net
based
embeddings

Mikolov: word2vec

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors BERT

Collobert and
Weston: A unified
architecture for
natural language
processing: Deep
neural networks...

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

GPT3

XLNet
RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

Blei et al.: [LDA Topic Modeling]

Osgood: The
Measurement
of Meaning

Deerwater:
Indexing by Latent
Semantic Analysis
(LSA)

Brown et al.: Class-based ngram models of
 natural language

Switzer: Vector
Space Models

Bengio:
Neural-net
based
embeddings

Mikolov: word2vec

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors BERT

Collobert and
Weston: A unified
architecture for
natural language
processing: Deep
neural networks...

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

GPT3

XLNet
RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

Blei et al.: [LDA Topic Modeling]

Osgood: The
Measurement
of Meaning

Deerwater:
Indexing by Latent
Semantic Analysis
(LSA)

Brown et al.: Class-based ngram models of
 natural language

Switzer: Vector
Space Models

Bengio:
Neural-net
based
embeddings

Mikolov: word2vec

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors BERT

Collobert and
Weston: A unified
architecture for
natural language
processing: Deep
neural networks...

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

GPT3

XLNet
RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

Blei et al.: [LDA Topic Modeling]

Osgood: The
Measurement
of Meaning

Deerwater:
Indexing by Latent
Semantic Analysis
(LSA)

Brown et al.: Class-based ngram models of
 natural language

Switzer: Vector
Space Models

Bengio:
Neural-net
based
embeddings

Mikolov: word2vec

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors BERT

Masked
Language Modeling

Task: Estimate P(wi| w1,…wi-1, wi+1... wn)
:P(masked word given context)

P(with | He ate the cake <M> the fork) = ?

Masked
Language Modeling

Task: Estimate P(wi| w1,…wi-1, wi+1... wn)
:P(masked word given context)

P(with | He ate the cake <M> the fork) = ?

 with yummy using and by without

Masked
Language Modeling

Task: Estimate P(wi| w1,…wi-1, wi+1... wn)
:P(masked word given context)

P(with | He ate the cake <M> the fork) = ?

 with yummy using and by without

Masked
Language Modeling

Task: Estimate P(wi| w1,…wi-1, wi+1... wn)
:P(masked word given context)

P(with | He ate the cake <M> the fork) = ?

 with yummy using and by without

Sequence
(He, at, the, cake,<MASK>,
the, fork)

Neural
Network

What is the masked
word in the sequence?

My life is a great messsentence (sequence) input:

…

layer 0:
(input: word-type embeddings)

layer k-1:
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with

context)

(Kjell, Kjell, and Schwartz, 2023)

layer k:
(used for language modeling)

Transformer Language Models: Uses multiple layers of a transformer

Auto-encoder (MLM):
● Connections go both directions.
● Task is predict word in middle:

p(wi| …, pwi-2, wi-1, wi+1, wi+2…)
● Better for:

○ embeddings
○ fine-tuning (transfer learning)

Auto-encoder (MLM):
● Connections go both directions.
● Task is predict word in middle:

p(wi| …, pwi-2, wi-1, wi+1, wi+2…)
● Better for:

○ embeddings
○ fine-tuning (transfer learning)

Auto-regressor (generator):
● Connections go forward only
● Task is predict word next word:

p(wi| wi-1, wi-2, …)
● Better for:

○ generating text
○ zero-shot learning

Auto-encoder (MLM):
● Connections go both directions.
● Task is predict word in middle:

p(wi| …, pwi-2, wi-1, wi+1, wi+2…)
● Better for:

○ embeddings
○ fine-tuning (transfer learning)

Auto-regressor (generator):
● Connections go forward only
● Task is predict word next word:

p(wi| wi-1, wi-2, …)
● Better for:

○ generating text
○ zero-shot learning

…

…

…

…

…

…

…

…

Bert: Attention by Layers
https://colab.research.google.com/drive/1vlOJ1lhdujVjfH857hvYKIdKPTD9Kid8

(Vig, 2019)

https://colab.research.google.com/drive/1vlOJ1lhdujVjfH857hvYKIdKPTD9Kid8

Hugging Face or AllenNLP

https://github.com/huggingface/transformers

https://docs.allennlp.org/v2.10.1/api/modules/transformer/transformer_module/

#example for getting embeddings

from transformers import BertModel, PreTrainedTokenizerFast, pipeline

bert_tokenizer = PreTrainedTokenizerFast.from_pretrained('google-bert/bert-base-uncased')

bert_model = BertModel.from_pretrained('google-bert/bert-base-uncased')

pipe = pipeline('feature-extraction', model=bert_model, tokenizer=bert_tokenizer)

emb = pipe(text)

print(emb[0][0])

https://github.com/huggingface/transformers
https://docs.allennlp.org/v2.10.1/api/modules/transformer/transformer_module/

Transformer (as of 2017)

“WMT-2014” Data Set. BLEU scores:

Transformers as of 2024

General Language Understanding Evaluations:

https://gluebenchmark.com/leaderboard

https://super.gluebenchmark.com/leaderboard/

https://gluebenchmark.com/leaderboard
https://super.gluebenchmark.com/leaderboard/

Large Transformer Language Model

Classifier

Assistant,
QA

Machine
Translation

Web
Search

Document
Classification

Sentiment
Analysis …

absolutamente
me gustaría ir
de excursión

(NLP System)

Language

Soni, N., Matero, M.,
Balasubramanian, N., &
Schwartz, H. (2022, May).
Human Language Modeling. In
Findings of the Association for
Computational Linguistics: ACL
2022 (pp. 622-636).

Transformers as of 2023

BERT Performance: e.g. Question Answering

https://rajpurkar.github.io/SQuAD-explorer/

https://rajpurkar.github.io/SQuAD-explorer/

Challenges to sequential representation learning

● Capture long-distance dependencies
Self-attention treats far away words similar to those close.

● Preserving sequential distances / periodicity
Positional embeddings encode distances/periods.

● Capture multiple relationships
Multi-headed attention enables multiple compositions.

● Easy to parallelize -- don’t need sequential processing.
Entire layer can be computed at once. Is only matrix
multiplications + standardizing.

The Transformer: Take Away

Part 3: Applying Transformer LMs

Foundational Applied

Applying Transformer LMs

Foundational Applied

Pretraining

Instruction Tuning

Fine-Tuning the LM
(continued pretraining)

Task Fine-Tuning

Retrieval-Augmented
Generation

Zero-Shot Learning
/ Direct Chat

Few-Shot Learning

Supervised ML
Features

modifies LM weights injects history no change or history

contextual embeddings

Unsupervised ML
or Similarity

Applying Transformer LMs

Foundational Applied

Pretraining

Instruction Tuning

Fine-Tuning the LM
(continued pretraining)

Task Fine-Tuning

Retrieval-Augmented
Generation

Zero-Shot Learning
/ Direct Chat

Few-Shot Learning

AEAR

AEAR

AR

AE

AR

AR

AR

Supervised ML
Features

AE

modifies LM weights injects history no change or history

contextual embeddings

Unsupervised ML
or Similarity

AE

AR

AR

AR

Foundational Applied

Pretraining

Instruction Tuning

Fine-Tuning the LM
(continued pretraining)

Task Fine-Tuning

Retrieval-Augmented
Generation

Zero-Shot Learning
/ Direct Chat

Few-Shot Learning

AEAR

AEAR

AR

AR

AR

AR

Supervised ML
Features

AE

injects history no change or history

contextual embeddings

Unsupervised ML
or Similarity

AE

Applying Transformer LMs

AEAR

modifies LM weights

sentence (sequence) input:

…

layer 0:
(input: word-type embeddings)

layer k-1:
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with

context)

(Kjell, Kjell, and Schwartz, 2023)

layer k:
(used for language modeling)

Pretraining; FTing the LM; Instruction Tuning

softmax for LM:

Large Training Corpus

sentence (sequence) input:

…

layer 0:
(input: word-type embeddings)

layer k-1:
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with

context)

layer k:
(used for language modeling)

Pretraining; FTing the LM; Instruction Tuning

softmax for LM:

Large Training CorpusNew Continued Training Corpus

sentence (sequence) input:

…

layer 0:
(input: word-type embeddings)

layer k-1:
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with

context)

layer k:
(used for language modeling)

Pretraining; FTing the LM; Instruction Tuning

softmax for LM:

Large Training Corpus
Task Prompts

e.g. What topic is this about? "Last night, the
 Seawolves won the game." answer: sports

Foundational Applied

Pretraining

Instruction Tuning

Fine-Tuning the LM
(continued pretraining)

Task Fine-Tuning

Retrieval-Augmented
Generation

Zero-Shot Learning
/ Direct Chat

Few-Shot Learning

AEAR

AEAR

AR

AE

AR

AR

AR

Supervised ML
Features

AE

injects history no change or history

contextual embeddings

Unsupervised ML
or Similarity

AE

Applying Transformer LMs

modifies LM weights

Foundational Applied

Pretraining

Instruction Tuning

Fine-Tuning the LM
(continued pretraining)

Task Fine-Tuning

Retrieval-Augmented
Generation

Zero-Shot Learning
/ Direct Chat

Few-Shot Learning

AEAR

AEAR

AR

AE

AR

AR

AR

Supervised ML
Features

AE

injects history no change or history

contextual embeddings

Unsupervised ML
or Similarity

AE

Applying Transformer LMs

modifies LM weights

sentence (sequence) input:

…

layer 0:
(input: word-type embeddings)

layer k-1:
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with

context)

(Kjell, Kjell, and Schwartz, 2023)

layer k:
(used for language modeling)

Task Fine-Tuning

softmax for LM:

Large Training Corpus

sentence (sequence) input:

…

layer 0:
(input: word-type embeddings)

layer k-1:
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with

context)

(Kjell, Kjell, and Schwartz, 2023)

optional layer(s) for task:

Task Fine-Tuning

classifier or regressor:
(e.g. sentiment, topic classification, etc.)

Large Training Corpus

AR

AR

Foundational Applied

Pretraining

Instruction Tuning

Fine-Tuning the LM
(continued pretraining)

Task Fine-Tuning

Retrieval-Augmented
Generation

Zero-Shot Learning
/ Direct Chat

Few-Shot Learning

AEAR

AEAR

AR

AE

AR

AR

AR

Supervised ML
Features

AE

injects history no change or history

contextual embeddings

Unsupervised ML
or Similarity

AE

Applying Transformer LMs

modifies LM weights

modifies LM weights

Foundational Applied

Pretraining

Instruction Tuning

Fine-Tuning the LM
(continued pretraining)

Task Fine-Tuning

Retrieval-Augmented
Generation

Zero-Shot Learning
/ Direct Chat

Few-Shot Learning

AEAR

AEAR

AR

AE

AR

AR

AR

Supervised ML
Features

AE

injects history no change or history

Unsupervised ML
or Similarity

AE

Applying Transformer LMs

contextual embeddings

AR

AR

sentence (sequence) input:

…

layer 0:
(input: word-type embeddings)

layer k-1:
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with

context)

(Kjell, Kjell, and Schwartz, 2023)

layer k:
(used for language modeling)

Contextual Embeddings: for Supervised ML; for Similarity (unsup)

softmax for LM:

New Corpus

sentence (sequence) input:

…

layer 0:
(input: word-type embeddings)

layer k-1:
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with

context)

(Kjell, Kjell, and Schwartz, 2023)

layer k:
(used for language modeling)

Contextual Embeddings: for Supervised ML; for Similarity (unsup)

softmax for LM:

New Corpus

sentence (sequence) input:

…

layer 0:
(input: word-type embeddings)

layer k-1:
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with

context)

(Kjell, Kjell, and Schwartz, 2023)

layer(s) for task:

classifier or regressor:
(e.g. sentiment, topic classification, etc.)

Large Training Corpus

linear, FFN, CNN, Random Forest,
or Any ML Model

Contextual Embeddings: for Supervised ML

equivalent to task fine-tuning but with all
frozen layers

sentence (sequence) input:

…

layer 0:
(input: word-type embeddings)

layer k-1:
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with

context)

(Kjell, Kjell, and Schwartz, 2023)

layer(s) for task:

Similarity?
classifier or regressor:

(e.g. sentiment, topic classification, etc.)

Large Training Corpus

Optional Aggregation

Contextual Embeddings: for Similarity (unsup)

equivalent to task fine-tuning but with all
frozen layers

Embedding Comparison
Embedding

modifies LM weights

Foundational Applied

Pretraining

Instruction Tuning

Fine-Tuning the LM
(continued pretraining)

Task Fine-Tuning

Retrieval-Augmented
Generation

Zero-Shot Learning
/ Direct Chat

Few-Shot Learning

AEAR

AEAR

AR

AE

AR

AR

AR

Supervised ML
Features

AE

injects history no change or history

Unsupervised ML
or Similarity

AE

Applying Transformer LMs

contextual embeddings

AR

AR

AR

modifies LM weights

Foundational Applied

Pretraining

Instruction Tuning

Fine-Tuning the LM
(continued pretraining)

Task Fine-Tuning

Retrieval-Augmented
Generation

Zero-Shot Learning
/ Direct Chat

Few-Shot Learning

AEAR

AEAR

AR

AE

AR

AR

AR

Supervised ML
Features

AE

Unsupervised ML
or Similarity

AE

contextual embeddings

AR

injects history no change or history

Applying Transformer LMs

sentence (sequence) input:

…

layer 0:
(input: word-type embeddings)

layer k-1:
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with

context)

layer k:
(used for language modeling)

RAG, Few-Shot, Zero-Shot

softmax for LM:

Large Training Corpus
Task Prompts

e.g. What topic is this about? "Last night, the
 Seawolves won the game." answer: sports

No training!
The model is frozen

Zero shot = Prompt has no examples, just
prompting directly for the task, without answer.

Few shot = Prompt has a few examples of the task
with answer, then prompting for the task without
answer.

RAG = Using other NLP techniques to retrieve
relevant information to include in the prompt
(retrieval approach can use other models).

Answer(s)

Applying Transformer LMs

Foundational Applied

Pretraining

Instruction Tuning

Fine-Tuning the LM
(continued pretraining)

Task Fine-Tuning

Retrieval-Augmented
Generation

Zero-Shot Learning
/ Direct Chat

Few-Shot Learning

AEAR

AEAR

AR

AE

AR

AR

AR

Supervised ML
Features

AE

modifies LM weights injects history no change or history

contextual embeddings

Unsupervised ML
or Similarity

AE

AR

AR

AR

Supplemental Review Material

Auto-Encoding

Auto-Regressive

AE AR

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

simpler version

Foundational Change
(modifies the LM weights)

Applied
(no change to LM)

Pretraining

Instruction Tuning

Fine-Tuning the LM
(continued pretraining)

Task Fine-Tuning

Retrieval-Augmented
Generation

Zero-Shot Learning
/ Direct Chat

Few-Shot Learning

Embeddings

My life is a great joysentence (sequence) input:

…

layer 0:
(input: word-type embeddings)

layer k-1:
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with

context)

(Kjell, Kjell, and Schwartz, 2023)

layer k:
(used for language modeling)

Pretraining; FTing the LM; Instruction Tuning

softmax for LM:

Decoder

Decoder: Cross Attention

Decoder: Masked Multi-Head Attention

